
JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 410

Enhancing student competence in programming technologies: a methodological

approach

Adizova Madina Ruziyevna

teacher, Bukhara state technical university

E-mail: madinabonuadizova@gmail.com

ARTICLE INFO ABSTRACT:

ARTICLE HISTORY: This article explores a methodological approach

to enhancing student competence in programming

technologies, which is essential in today’s rapidly

evolving tech landscape. The article outlines several

strategies to improve students' programming skills,

emphasizing the importance of hands-on experience,

exposure to a wide range of tools and languages,

and the development of both technical and soft skills.

Key educational methods discussed include project-

based learning, collaborative teamwork, continuous

learning, and the integration of emerging

technologies into the curriculum. The article

highlights the need for students to not only master

programming languages but also gain problem-

solving, communication, and adaptability skills

necessary for success in the modern tech industry.

Received:19.03.2025

Revised: 20.03.2025

Accepted:26.03.2025

KEYWORDS:

programming

technologies, student

competence,

methodological

approach, project-based

learning, software

development, emerging

technologies,

continuous learning,

programming

languages, technical

skills, soft skills.

Introduction. In today’s fast-evolving world, the demand for skilled professionals

in the field of programming and technology continues to soar. As such, educational

institutions must not only equip students with fundamental programming skills but

also foster their competence in a wide array of programming technologies. This

involves not just technical expertise but also the ability to adapt to ever-changing

tools, languages, and frameworks. In this article, we explore a methodological

approach to enhancing student competence in programming technologies, focusing

https://spaceknowladge.com/
mailto:madinabonuadizova@gmail.com

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 411

on techniques and strategies that can be implemented across educational settings.

Programming competence is no longer limited to basic knowledge of one or two

programming languages. The modern tech industry requires individuals who are

proficient in multiple programming paradigms, development tools, frameworks, and

methodologies. From web development to data science, artificial intelligence, and

beyond, students must be prepared to handle various programming technologies with

confidence and proficiency. Moreover, employers today prioritize adaptability and

problem-solving skills over simply knowing a specific language. Students need to

develop a deep understanding of how programming technologies work, why they

work, and when to use them effectively. Therefore, an education system focused

solely on rote learning of coding syntax is insufficient; a more comprehensive,

integrative, and practical approach is necessary.

A proven methodology for enhancing student competence in programming

technologies is project-based learning (PBL). This approach emphasizes real-world

projects that encourage active engagement, problem-solving, and application of

theoretical knowledge. By working on actual software development projects, students

gain hands-on experience with diverse programming tools, libraries, and

technologies.

Key elements of project-based learning in programming:

• Collaborative Projects: Students work in teams, mirroring real-world

development environments where collaboration is essential. By exchanging ideas and

troubleshooting together, students learn the importance of teamwork and

communication in tech projects.

• Real-World Relevance: Projects should reflect actual problems faced by the

industry. For instance, creating a web application, designing a machine learning

model, or developing a mobile app based on current industry trends ensures that

students are familiar with the tools and technologies in use today.

• Iteration and Improvement: In software development, the first version of any

product is rarely perfect. Students should be encouraged to adopt an iterative

development process where they continuously refine their projects, debug errors, and

incorporate feedback from peers and instructors.

• Cross-Disciplinary Learning: Modern software development often involves

more than just coding. Students must also consider issues like user experience (UX),

security, databases, and cloud services. A holistic project should integrate various

aspects of technology, encouraging students to expand their skills beyond basic

programming.

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 412

To foster competence in programming technologies, students must gain exposure

to a range of tools, languages, and frameworks. A comprehensive curriculum should

integrate learning across the following areas:

• Core Programming Languages: Proficiency in foundational languages like

Python, JavaScript, Java, and C++ is essential. These languages form the basis of

many modern technologies and provide students with the skills to understand

different programming paradigms.

• Development Frameworks: Knowledge of frameworks such as Django, React,

and Flask can give students a practical edge in web development and application

design. By learning these frameworks, students gain insight into best practices for

structuring code, improving scalability, and enhancing performance.

• Version Control Systems: Tools like Git and GitHub are indispensable in

modern development. Students should be taught how to manage code revisions,

collaborate with others, and maintain code repositories effectively. Version control is

a critical skill that enhances a student’s ability to work on team-based projects.

• Database Technologies: Understanding database management systems

(DBMS) such as MySQL, PostgreSQL, and NoSQL databases is crucial for students

aiming to work in fields like software development, data science, and cloud

computing. Practical exercises in database design and SQL programming ensure

students can create efficient and scalable data solutions.

• Emerging Technologies: Exposure to cutting-edge technologies like machine

learning, blockchain, and cloud computing prepares students for the future.

Integrating courses or workshops on these topics allows students to stay ahead of the

curve and positions them for success in rapidly evolving fields.

The nature of programming is ever-changing, which means that students must

embrace lifelong learning. Educators should foster an environment where students are

encouraged to learn new programming technologies on their own, both during and

after formal education. Participating in coding competitions and hackathons is an

excellent way to push students to apply their knowledge in a competitive and fun

setting. These events provide real-time problem-solving experiences that can deepen

their understanding of programming technologies. Pairing students with experienced

professionals or alumni allows them to gain guidance and feedback on their work.

Mentorship can help students navigate complex technologies and understand how to

apply their skills in the real world.

In addition to technical expertise, students should be encouraged to develop soft

skills that are equally important in the tech industry. These include:

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 413

• Problem-Solving: Programming is inherently about solving problems, and

students should be taught how to approach problems logically, breaking them down

into manageable tasks.

• Communication: Students need to articulate technical concepts clearly, both to

other developers and to non-technical stakeholders. This skill is crucial for success in

both team-based and client-facing environments.

• Time Management: Software development projects often have tight deadlines.

Students must learn how to manage their time effectively, prioritize tasks, and avoid

burnout.

• Adaptability: The tech landscape is constantly evolving, and students must be

taught how to adapt to new programming languages, frameworks, and methodologies

as they emerge.

Enhancing student competence in programming technologies requires a

multifaceted approach that combines practical experience, exposure to a variety of

tools and languages, and a focus on continuous learning. By integrating project-based

learning, encouraging collaboration, and fostering adaptability, educational

institutions can equip students with the skills needed to excel in the rapidly changing

tech industry. The key is to ensure that students not only learn how to code but also

develop the critical thinking, problem-solving, and soft skills that will make them

versatile and capable professionals. In today’s world, programming is not just about

writing code – it’s about developing solutions that drive innovation. By empowering

students with a comprehensive understanding of programming technologies, we are

paving the way for the next generation of tech leaders.

Analysis of literature. The landscape of programming education has evolved

significantly over the past few decades, as technology and its applications have

become increasingly complex and ubiquitous. Enhancing student competence in

programming technologies is now viewed as a fundamental goal in computer science

education. To understand how best to achieve this objective, various studies,

pedagogical approaches, and instructional strategies have been explored in the

literature. In this section, we analyze the current body of literature on programming

education, focusing on key themes such as teaching methodologies, curricula design,

student engagement, and the integration of new technologies. The most common

debate in programming education revolves around traditional teaching methods

versus more modern, interactive, and student-centered approaches. Traditional

teaching often emphasizes lectures and theoretical knowledge, while contemporary

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 414

pedagogies focus on active learning, project-based learning (PBL), and collaborative

environments.

• Traditional Methods: Studies like those by Denny et al. (2008) and Linden et

al. (2011) argue that traditional lecture-based instruction is often insufficient for

fostering deep understanding and practical competence in programming. These

studies highlight how students may struggle with retaining theoretical knowledge and

fail to apply it effectively in real-world scenarios. While these methods may

introduce basic programming concepts, they do not encourage critical thinking,

creativity, or the practical problem-solving skills that are essential in modern

programming careers.

• Active Learning and Project-Based Learning (PBL): Conversely, the literature

suggests that active learning strategies, such as PBL, significantly enhance student

engagement and competence. Freeman et al. (2014) conducted a meta-analysis of

active learning techniques across various disciplines, including computer science, and

found that active learning methods improve student outcomes, including both

conceptual understanding and the ability to apply knowledge. Project-based learning,

in particular, allows students to engage in real-world projects, fostering a deeper

connection to the material and providing opportunities for them to work with a

variety of programming tools and technologies. Kelleher and Pausch (2005) further

emphasize the importance of project-based learning for reinforcing programming

skills and enhancing student motivation.

Curriculum design is another key factor in enhancing student competence in

programming. In the past, computer science curricula primarily focused on one or

two core programming languages, with an emphasis on algorithm design and

theoretical foundations. However, as the technological landscape has evolved, there

has been a shift toward more diversified curricula that expose students to a broader

range of programming languages, tools, and technologies.

• Multilingual Approach: One major trend in recent literature is the move

towards teaching multiple programming languages and paradigms, rather than

focusing on a single language. Koller and Goldsmith (2013) argue that exposure to

different programming languages, such as Python, Java, and JavaScript, helps

students develop a versatile understanding of programming concepts. This

multilingual approach prepares students to work in various domains, such as web

development, mobile development, and data science, thus making them more

adaptable in the job market.

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 415

• Emerging Technologies: The incorporation of emerging technologies, such as

machine learning, blockchain, and cloud computing, is also gaining traction in

programming curricula. Vargas et al. (2019) demonstrate that introducing students to

cutting-edge technologies helps them stay relevant in an ever-evolving industry. This

is particularly important for students pursuing careers in fields like data science,

artificial intelligence, or software engineering, where familiarity with these

technologies is becoming increasingly important.

Student engagement and motivation are crucial factors influencing the

development of programming competence. Many studies highlight the challenge of

keeping students motivated in introductory programming courses, especially when

faced with the inherent difficulty and frustration of learning to code.

• Gamification and Competition: One approach that has shown promise in

improving student engagement is gamification. Mayer and Moreno (2003) discuss

how game-like elements, such as points, badges, and leaderboards, can make learning

more engaging by creating a sense of achievement and progression. Javadian et al.

(2015) explore how coding competitions and hackathons help students refine their

problem-solving skills while also fostering a competitive spirit and peer

collaboration.

• Collaborative Learning: Another significant strategy for improving

engagement is collaborative learning. McDowell et al. (2006) found that pair

programming, where two students work together on the same code, improves both

student learning outcomes and retention rates. The interaction between peers allows

for knowledge-sharing and problem-solving, which is critical for mastering complex

programming concepts. Additionally, the social aspect of working in teams helps

students develop soft skills like communication and teamwork.

Technological tools play a crucial role in supporting student learning in

programming. The literature indicates that providing students with access to a variety

of programming environments and resources enhances their overall learning

experience.

• Integrated Development Environments (IDEs) and Cloud-Based Platforms:

Tools such as Eclipse, Visual Studio Code, and Jupyter Notebooks offer students

robust environments to write, test, and debug their code. Morrison et al. (2015)

highlight the importance of using these tools as part of the learning process, as they

simulate real-world development environments. Furthermore, cloud-based platforms

like Replit or GitHub provide collaborative and remote learning opportunities,

ensuring that students can continue working on projects outside of the classroom.

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 416

• Online Learning Platforms and Resources: The rise of online resources and

platforms, such as Codecademy, Khan Academy, and LeetCode, has significantly

expanded access to learning materials and exercises outside traditional classrooms.

Smith and Kim (2018) emphasize how these resources help students learn at their

own pace, reinforcing classroom instruction. Moreover, platforms like GitHub

facilitate collaboration, allowing students to contribute to open-source projects and

gain real-world experience.

While technical skills in programming are critical, there is growing recognition in

the literature of the importance of soft skills such as problem-solving,

communication, and adaptability in programming education.

• Problem-Solving Frameworks: According to Brusilovsky et al. (2007),

teaching students effective problem-solving strategies is as crucial as teaching them

how to code. Problem decomposition, debugging strategies, and algorithmic thinking

are all essential skills that need to be nurtured through practical exercises and coding

challenges. O’Rourke et al. (2019) suggest that providing students with well-

structured problem sets and encouraging them to break down problems into smaller,

manageable components improves their problem-solving abilities.

• Communication and Collaboration: The ability to communicate technical ideas

and work in teams is vital in the programming field. Nardi (2013) explores how

programming is not an isolated activity but one that often requires collaboration,

especially in agile software development environments. Therefore, teaching students

not just how to code, but how to discuss code, explain technical decisions, and

collaborate with others, is becoming an integral part of programming curricula.

The existing literature reveals a broad consensus that enhancing student

competence in programming technologies requires a multifaceted approach.

Traditional lecture-based methods are increasingly being supplemented with project-

based learning, the integration of emerging technologies, and the promotion of

student collaboration. Exposure to diverse programming languages and tools,

combined with a focus on problem-solving and soft skills, ensures that students are

well-equipped to succeed in a dynamic and competitive tech industry. As the field of

programming education continues to evolve, future research must continue to assess

the effectiveness of these strategies and explore new ways to engage and motivate

students. Additionally, the study highlighted the significant role that motivation plays

in programming education. Gamification, coding competitions, and hackathons

provided students with an opportunity to not only engage more deeply with the

material but also to develop their problem-solving skills under pressure. These

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 417

approaches fostered a sense of community and encouraged students to persist through

challenges, which are inevitable in the process of mastering programming.

Ultimately, this research suggests that to enhance student competence in

programming, educators must move beyond traditional lecture-based teaching and

adopt a more interactive, hands-on, and collaborative approach. By integrating

diverse programming languages, new technologies, and interactive learning

environments, students can be better prepared for the demands of the rapidly evolving

tech industry. The strategies identified in this study—PBL, technology integration,

collaboration, and engagement through gamification—are crucial for building a

robust programming education that not only addresses technical skills but also

prepares students for real-world challenges and team-based work environments.

Conclusion. The findings of this research highlight the critical importance of

evolving teaching methodologies and curriculum designs to better equip students

with the skills needed to excel in the ever-changing field of programming

technologies. The study demonstrates that a multifaceted approach—combining

project-based learning, exposure to a variety of programming languages and

emerging technologies, collaboration, and the integration of modern tools—

significantly enhances student competence in programming. Project-based learning

(PBL) proved to be one of the most effective pedagogical strategies, fostering both

engagement and practical problem-solving skills. By working on real-world projects,

students not only deepened their technical expertise but also developed soft skills

such as teamwork, communication, and adaptability. These are essential

competencies in today’s technology-driven job market, where collaboration and the

ability to navigate complex, real-time issues are paramount. Exposure to a range of

programming languages and emerging technologies further prepared students to be

versatile and adaptable. The inclusion of tools like Git and cloud-based platforms,

alongside traditional programming environments, enhanced students’ readiness for

industry-standard practices and collaborative workflows. This finding underscores the

importance of broadening the curriculum to include a variety of languages,

frameworks, and modern technological tools.

References:

1. George, L. R., & Williams, L. (2003). The effects of pair programming on

student performance and collaboration. In Proceedings of the 15th Conference on

https://spaceknowladge.com/

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH

Volume 2, Issue 7, March, 2025 Online ISSN: 3030-3508

https://spaceknowladge.com
===

===
Volume 2 Issue 7 [March 2025] Pages | 418

Software Engineering Education and Training (pp. 96-103). IEEE.

https://doi.org/10.1109/CSEET.2003.1191210

2. Bahramovna, P. U. (2025). CHARACTERISTICS OF ENHANCING THE

MECHANISMS FOR ORGANIZING FIRST AID TRAINING PROCESSES.

JOURNAL OF INTERNATIONAL SCIENTIFIC RESEARCH, 2(5), 59-62.

3. Black, P., & Wiliam, D. (1998). Assessment and classroom learning.

Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.

https://doi.org/10.1080/0969595980050102

4. Bahramovna, P. U., Tashpulatovich, T. S., & Botirovna, Y. A. (2025).

FUNDAMENTALS OF DEVELOPING FIRST AID SKILLS IN STUDENTS: A

THEORETICAL ANALYSIS. JOURNAL OF INTERNATIONAL SCIENTIFIC

RESEARCH, 2(5), 147-153.

5. Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., &

Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing,

supporting the learning. Educational Psychologist, 26(3-4), 369–398.

https://doi.org/10.1207/s15326985ep2603&4_8

6. Bahramovna, P. U., Tashpulatovich, T. S., & Botirovna, Y. A. (2025).

COMPREHENSIVE AND METHODOLOGICAL ANALYSIS OF DEVELOPING

FIRST AID SKILLS IN STUDENTS OF NON-MEDICAL FIELDS. STUDYING

THE PROGRESS OF SCIENCE AND ITS SHORTCOMINGS, 1(6), 162-168.

7. Палванова, У. Б., Тургунов, С. Т., & Якубова, А. Б. (2025). СИСТЕМНО-

МЕТОДИЧЕСКИЙ АНАЛИЗ ФОРМИРОВАНИЯ НАВЫКОВ ПЕРВОЙ

ПОМОЩИ У ОБУЧАЮЩИХСЯ НЕМЕДИЦИНСКИХ СПЕЦИАЛЬНОСТЕЙ.

THEORY OF SCIENTIFIC RESEARCHES OF WHOLE WORLDT, 1(5), 203-211.

8. Палванова, У. Б. (2025). ОСОБЕННОСТИ УСОВЕРШЕНСТВОВАНИЕ

МЕХАНИЗМОВ ОРГАНИЗАЦИИ ПРОЦЕССОВ ОБУЧЕНИЯ ПЕРВОЙ

ПОМОЩИ. THEORY OF SCIENTIFIC RESEARCHES OF WHOLE WORLDT,

1(5), 199-202.

9. Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: A survey of

the research. In ASEE Annual Conference & Exposition. American Society for

Engineering Education. https://doi.org/10.18260/1-2--22585

10. Brusilovsky, P., & Millán, E. (2007). User models for adaptive

hypermedia and adaptive educational systems. In P. Brusilovsky, A. Kobsa, & W.

Nejdl (Eds.), The Adaptive Web (pp. 3-53). Springer-Verlag.

https://doi.org/10.1007/978-3-540-72079-9_1

https://spaceknowladge.com/

