

## RENAL FILTRATION

Asatullayev Rustamjon Baxtiyarovich  
G'aybullayev Mirmuhammad Yorqin o'g'li

### MAQOLA MALUMOTI

#### MAQOLA TARIXI:

Received: 16.11.2025

Revised: 17.11.2025

Accepted: 18.11.2025

#### KALIT SO'ZLAR:

Renal filtration,  
Glomerular filtration,  
Glomerular filtration  
rate, Renal  
corpuscle,  
Glomerulus,  
Bowman's capsule,  
Filtration barrier,  
Podocytes, Basement  
membrane, Starling  
forces.

### ANNOTATSIYA:

*Renal filtration (also called glomerular filtration) is the first and one of the most important steps in urine formation. It occurs in the kidneys' functional units, the nephrons, and ensures the removal of metabolic waste products while maintaining the body's fluid, electrolyte, and acid-base balance. Renal filtration enables the continuous cleansing of blood and contributes significantly to homeostasis.*

### Introduction

#### Anatomical Basis of Renal Filtration

Renal filtration takes place in the renal corpuscle, which consists of:

##### 1. The Glomerulus

A tuft of capillaries that receives blood from the afferent arteriole and drains into the efferent arteriole. The unique pressure characteristics within these capillaries drive filtration.

##### 2. Bowman's Capsule

A double-walled structure surrounds the glomerulus. The filtrate that passes out of the glomerular capillaries collects in the capsule's space before entering the renal tubules.

### 3. Filtration Barrier

The glomerular filtration barrier consists of:

Fenestrated capillary endothelium

Basement membrane

Podocyte foot processes with slit diaphragms

This highly selective barrier allows water and small solutes to pass while restricting proteins and blood cells.

### Physiological Mechanism of Filtration

Renal filtration is driven by Starling forces, primarily the glomerular filtration pressure.

Three pressures determine the rate of filtration:

1. Glomerular Hydrostatic Pressure (GHP) – pushes fluid out of capillaries ( $\approx 55$  mmHg)
2. Blood Colloid Osmotic Pressure (BCOP) – pulls fluid back into capillaries ( $\approx 30$  mmHg)
3. Capsular Hydrostatic Pressure (CHP) – pushes fluid into capillaries ( $\approx 15$  mmHg)

The overall Net Filtration Pressure (NFP) is typically:

$$NFP = GHP - (BCOP + CHP) \approx 10 \text{ mmHg}$$

This positive pressure drives plasma fluid into Bowman's capsule.

### Glomerular Filtration Rate (GFR)

GFR is the total volume of filtrate produced by the kidneys per minute.

Normal adult GFR:  $\sim 120\text{--}125$  mL/min

Filtrate produced per day:  $\sim 180$  liters, but 99% is reabsorbed

### Regulation of GFR

#### 1. Autoregulation

Myogenic mechanism: afferent arteriole responds to changes in blood pressure

Tubuloglomerular feedback: macula densa senses NaCl concentration

#### 2. Hormonal Regulation

The renin–angiotensin–aldosterone system (RAAS) increases GFR

Atrial natriuretic peptide (ANP) increases GFR by dilating the afferent arteriole

#### 3. Neural Regulation

The sympathetic nervous system constricts the afferent arteriole during stress or blood loss

Composition of Glomerular Filtrate

Filtrate resembles blood plasma without proteins. It contains:

Water

Glucose

Amino acids

Electrolytes ( $\text{Na}^+$ ,  $\text{K}^+$ ,  $\text{Cl}^-$ ,  $\text{HCO}_3^-$ )

Nitrogenous wastes (urea, creatinine)

Large proteins and blood cells are normally absent.

Clinical Significance

1. Proteinuria / Albuminuria

The presence of protein in urine indicates a damaged filtration barrier. Common in:

Diabetic nephropathy

Hypertension

Glomerulonephritis

2. Hematuria

Blood in urine suggests severe glomerular injury or urinary tract pathology.

3. Reduced GFR

Associated with:

Acute kidney injury (AKI)

Chronic kidney disease (CKD)

Renal artery stenosis

Dehydration

GFR measurement is crucial for:

Diagnosing kidney disease

Adjusting medication doses

Monitoring renal function over time

Conclusion

Renal filtration is a sophisticated physiological process that ensures the continuous purification of blood. By selectively filtering fluid and solutes through the glomerular barrier—and regulating this process through neural, hormonal, and intrinsic mechanisms—the kidneys maintain homeostasis and protect the body from metabolic toxicity. Disruption

---

of renal filtration can lead to serious clinical consequences, making it a central topic in physiology, medicine, and nephrology.

## **References**

1. Ebefors, K., Lassén, E., Anandakrishnan, N., Azeloglu, E. U., & Daehn, I. S. (2021).
2. The Glomerular Filtration Barrier: Components And Crosstalk. (Pubmed)
3. The Glomerular Filtration Barrier: Function And New Concepts. (Pubmed)
4. Human Physiology – Glomerular Filtration (Lmu Pressbooks)
5. Pearson: Renal Physiology – Regulation Of Glomerular Filtration
6. Critical Care Nephrology (Ronco, 3rd Ed.)
7. Renal Physiology Lecture Notes (University Of Szeged)
8. Review: Glomerular Ultrastructure (Endocrinology Frontiers).
9. Asatullayev , R. ., & Chinmirzayeva , M. . (2025). Digital Technology And Its Role In Our Lives. *Journal Of Applied Science And Social Science*, 1(2), 169–172.
10. Asatullayev , R., & Kholbotayeva , M. . (2025). The Heart And The Cardiovascular System. *Journal Of Applied Science And Social Science*, 1(1), 667–671.
11. Physiology And Clinical Significance Of Shaped Blood Eliminations. (2025). *International Journal Of Artificial Intelligence*, (10), 1734-1736.