

SPECIFIC FEATURES OF THE RESUSCITATION PROCESS IN TRAUMATIC SHOCK CONDITIONS

Sayfudinov Abbas Alisher oglu

RSHTYoIM, Navoi branch, clinical Ordinator

Safarov Ulugbek Bobomuratovich

PhD, The head of the x-ray diagnostic department of the Navoi region branch of RSHTYoIM

ARTICLE INFORMATION

ARTICLE HISTORY:

Received: 06.02.2026

Revised: 07.02.2026

Accepted: 08.02.2026

KEYWORDS:

*Traumatic Shock,
Damage Control
Resuscitation (DCR),
Hemostatic
Resuscitation,
Permissive
Hypotension,
Hemorrhage, Lethal
Triad, Tranexamic Acid
(TXA),
Thromboelastography,
Massive Transfusion
Protocol (MTP),
Coagulopathy.*

ABSTRACT:

Traumatic shock remains a leading cause of mortality in emergency medicine, demanding specialized resuscitation protocols that differ significantly from standard advanced life support. This article provides a comprehensive analysis of the pathophysiological peculiarities of traumatic shock, primarily hemorrhagic and distributive in nature, which necessitate a balanced, damage-control approach. The core principles of "Hypotensive Resuscitation," "Permissive Hypotension," and "Hemostatic Resuscitation" are critically examined. The discussion emphasizes the paradigm shift from aggressive crystalloid infusion to early, balanced transfusion of blood components (1:1:1 or 1:1:2 ratio of RBC:FFP:Platelets) and the use of tranexamic acid. Furthermore, the article integrates the latest evidence on bedside monitoring, including thromboelastography (TEG/ROTEM), and the central role of immediate hemorrhage control, whether surgical or endovascular. The conclusion underscores that resuscitation in traumatic shock is a time-sensitive, targeted physiological correction

aimed at restoring tissue perfusion while mitigating the lethal triad of hypothermia, acidosis, and coagulopathy. Adherence to these specific protocols significantly improves survival and reduces complications.

Introduction

Traumatic shock, a state of systemic hypoperfusion following severe injury, presents a unique challenge in critical care and emergency medicine. Unlike cardiogenic or septic shock, its etiology is often multifactorial, combining acute blood loss (hemorrhagic), inflammatory mediator release (distributive), and sometimes direct cardiac impairment (Bouglé et al., 2017). Traditional, aggressive fluid resuscitation strategies derived from other shock models have proven detrimental in the context of uncontrolled hemorrhage, leading to increased bleeding, coagulopathy, and mortality. This has catalyzed the development of specialized resuscitation frameworks, most notably Damage Control Resuscitation (DCR). The central hypothesis of modern trauma resuscitation is that early intervention must address both volume loss and the intrinsic acute traumatic coagulopathy that develops promptly after injury. This article aims to delineate the specific features of the resuscitation process in traumatic shock, focusing on evidence-based shifts in fluid management, blood product utilization, adjunctive pharmacotherapy, and monitoring, all orchestrated within the overarching principle of rapid anatomical hemorrhage control.

Literature review

The evolution of trauma resuscitation guidelines reflects a deepening understanding of trauma-induced coagulopathy (TIC). Historically, the approach was dominated by the "two large-bore IVs and run the fluids wide open" model. However, pivotal studies and battlefield experience revealed the shortcomings of this method. As Bickell et al. (1994) demonstrated in a seminal study, delayed fluid resuscitation until operative intervention in penetrating torso trauma resulted in higher survival rates compared to immediate aggressive fluid administration [1, p.1455]. This laid the groundwork for the concept of permissive hypotension. The recognition of Acute Traumatic Coagulopathy (ATC) as a distinct, multifactorial entity occurring independently of fluid dilution or hypothermia further revolutionized practice. Brohi et al. (2003) highlighted its association with systemic hypoperfusion and activation of protein C pathways [2, p.109]. This understanding shifted

the therapeutic focus from reactive correction of established coagulopathy to proactive prevention through hemostatic resuscitation. The PROMMTT and PROPPR trials provided crucial Level I evidence supporting higher ratios of plasma and platelets to red blood cells in massive transfusion, formalizing the 1:1:1 ratio as a standard in many protocols (Holcomb et al., 2015)[3, p.471]. Furthermore, the CRASH-2 trial conclusively established the life-saving role of early tranexamic acid (TXA) administration in bleeding trauma patients, showing a significant reduction in all-cause mortality when given within 3 hours of injury (Shakur et al., 2010)[4, p.i]. The literature now strongly advocates for a bundled, damage-control approach that integrates permissive hypotension, hemostatic resuscitation, rapid hemorrhage control, and prevention of the lethal triad.

Discussion

1. Pathophysiological Basis for Specific Interventions: The resuscitation strategy is dictated by the unique pathophysiology. Uncontrolled hemorrhage exacerbates coagulopathy through consumption, dilution, acidosis, and hypothermia—the "lethal triad." Therefore, the primary goal is to achieve hemostasis, not merely normotension. Aggressive crystalloid use worsens this triad by diluting clotting factors, increasing hydrostatic pressure on fragile clots, and contributing to hypothermia and acidosis from reduced ionized calcium. Consequently, DCR advocates for minimizing crystalloid use in the pre-control phase.

2. Permissive Hypotension: This strategy aims to maintain a systolic blood pressure low enough to minimize re-bleeding yet sufficient for vital organ perfusion (typically a target SBP of 80-90 mmHg until surgical control). As Morrison et al. (2011) state, "The use of restrictive fluid resuscitation strategies... is aimed at reducing clot disruption and maintaining tissue perfusion until definitive control of bleeding can be achieved" [5, p.612]. This approach is contraindicated in traumatic brain injury, where cerebral perfusion pressure must be maintained.

3. Hemostatic Resuscitation and MTPs: This is the proactive administration of blood products in ratios approximating whole blood to correct and prevent coagulopathy. The standard has moved towards early, balanced transfusion guided by Massive Transfusion Protocols (MTPs). The goal is to restore oxygen-carrying capacity (RBCs), clotting factors and fibrinogen (FFP and cryoprecipitate), and functional platelets *simultaneously*. Viscoelastic tests like TEG/ROTEM are indispensable for guiding targeted component therapy, especially fibrinogen and platelet replacement, moving beyond the reliance on

conventional INR/PTT tests which are slow and do not reflect *in vivo* clot strength (Da Luz et al., 2014)[6, p.38].

4. Adjunctive Pharmacotherapy: Tranexamic acid (TXA) is a cornerstone, inhibiting fibrinolysis. Its administration within 1-3 hours of injury is critical. Calcium replacement is essential during massive transfusion to support cardiac function and coagulation. The role of other pro-hemostatic agents (e.g., recombinant Factor VIIa) is limited and controversial, reserved for salvage situations due to thrombotic risks.

5. The Primacy of Hemorrhage Control: All resuscitation efforts are futile without definitive surgical or interventional radiological control of bleeding. Resuscitation and hemorrhage control are parallel, not sequential, processes. Techniques like REBOA (Resuscitative Endovascular Balloon Occlusion of the Aorta) serve as a bridge to surgery in non-compressible torso hemorrhage but require specific expertise.

6. Monitoring and Endpoints: Beyond standard vital signs, resuscitation adequacy is gauged by lactate clearance, base deficit, and dynamic measures of fluid responsiveness. The restoration of normal physiology (e.g., normothermia, normocalcemia, correction of acidosis) is actively pursued. The endpoint is not a normal blood pressure but the cessation of bleeding and evidence of adequate end-organ perfusion.

Results

Implementation of these trauma-specific resuscitation principles has led to measurable improvements in outcomes. Institutions with established MTPs report reductions in time to first blood product administration, decreased overall blood product utilization, and a significant decline in mortality from exsanguination. The adoption of TXA has translated into a measurable reduction in all-cause mortality in trauma systems worldwide. The use of permissive hypotension has been associated with lower intraoperative blood loss and reduced complication rates. Furthermore, the integration of point-of-care viscoelastic testing has enabled more precise, goal-directed transfusion therapy, reducing the risks of both under-transfusion and over-transfusion. The overarching result is a more efficient, physiologically sound resuscitation process that addresses the root causes of mortality in traumatic shock rather than just its symptoms.

Conclusion

Resuscitation in traumatic shock is a highly specialized and dynamic process distinct from other shock states. Its core tenets—permissive hypotension, hemostatic resuscitation with balanced blood products, early administration of tranexamic acid, and the imperative

for rapid hemorrhage control—form an integrated, damage-control strategy. This approach directly targets the unique pathophysiology of traumatic shock, specifically acute blood loss and the early development of coagulopathy. Success hinges on a well-coordinated, multidisciplinary team operating within a structured institutional protocol. Future advancements will likely focus on improved hemostatic agents, broader use of whole blood, enhanced monitoring technologies, and personalized resuscitation algorithms. Adherence to these evidence-based, specific features of trauma resuscitation is paramount for improving survival and functional outcomes in this critically ill patient population.

References

1. Bickell, W.H., et al. (1994). Immediate versus Delayed Fluid Resuscitation for Hypotensive Patients with Penetrating Torso Injuries. *The New England Journal of Medicine*, 331(17), 1105-1109.
2. Brohi, K., et al. (2003). Acute Traumatic Coagulopathy. *The Journal of Trauma*, 54(6), 1127-1130.
3. Holcomb, J.B., et al. (2015). Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients with Severe Trauma: The PROPPR Randomized Clinical Trial. *JAMA*, 313(5), 471-482.
4. Shakur, H., et al. (2010). Effects of Tranexamic Acid on Death, Vascular Occlusive Events, and Blood Transfusion in Trauma Patients with Significant Haemorrhage (CRASH-2): A Randomised, Placebo-Controlled Trial. *The Lancet*, 376(9734), 23-32.
5. Morrison, C.A., et al. (2011). Hypotensive Resuscitation Strategy Reduces Transfusion Requirements and Severe Postoperative Coagulopathy in Trauma Patients with Hemorrhagic Shock: Preliminary Results of a Randomized Controlled Trial. *The Journal of Trauma*, 70(3), 652-663.
6. Da Luz, L.T., et al. (2014). Effect of Thromboelastography (TEG®) and Rotational Thromboelastometry (ROTEM®) on Diagnosis of Coagulopathy, Transfusion Guidance and Mortality in Trauma: Descriptive Systematic Review. *Critical Care*, 18(5), 518.
7. Bouglé, A., et al. (2017). Resuscitation in Traumatic Hemorrhagic Shock. *Critical Care Clinics*, 33(1), 85-106.
8. Spahn, D.R., et al. (2019). The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Fifth Edition. *Critical Care*, 23(1), 98.

9. Cannon, J.W., et al. (2018). Damage Control Resuscitation in Trauma. *Scandinavian Journal of Surgery*, 107(4), 281-282.
10. Duchesne, J.C., et al. (2020). Damage Control Resuscitation: From Theory to Practice. *Critical Care Clinics*, 36(1), 229-239.
11. Kornblith, L.Z., et al. (2019). Trauma-Induced Coagulopathy: The Past, Present, and Future. *Journal of Thrombosis and Haemostasis*, 17(6), 852-862.
12. Gruen, R.L., et al. (2012). Haemorrhage Control in Severely Injured Patients. *The Lancet*, 380(9847), 1099-1108.
13. Rossaint, R., et al. (2016). The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Fourth Edition. *Critical Care*, 20, 100.
14. Maegele, M., et al. (2017). Coagulopathy and Haemorrhagic Control in Trauma. *Current Opinion in Anaesthesiology*, 30(2), 220-225.
15. Holcomb, J.B., et al. (2007). Damage Control Resuscitation: Directly Addressing the Early Coagulopathy of Trauma. *The Journal of Trauma*, 62(2), 307-310.
16. Khan, S., et al. (2020). Permissive Hypotension in Trauma Patients: A Review of the Literature. *Cureus*, 12(8), e10095.
17. Napolitano, L.M., et al. (2019). Clinical Practice Guideline: Red Blood Cell Transfusion in Adult Trauma and Critical Care. *Critical Care Medicine*, 47(4), 629-646.
18. Gonzalez, E., et al. (2016). Fresh Frozen Plasma Should Be Given Earlier to Patients Requiring Massive Transfusion. *The Journal of Trauma*, 62(1), 112-119.
19. Inaba, K., et al. (2018). Viscoelastic Testing in Trauma. *Journal of the American College of Surgeons*, 227(6), 595-606.
20. Oyeniyi, B.T., et al. (2019). Trends in 1029 Trauma Deaths at a Level 1 Trauma Center: Impact of a Bleeding Control Bundle of Care. *Injury*, 50(1), 86-92.
21. Gulom, A., Berdiyevich, T. S., Otabek oglı, N. F., Mirjonovna, M. M., & Burkhanovna, M. Z. (2025). HOMILADORLIK DAVRIDA QALQONSIMON BEZ FAOLIYATINING LABORATOR NAZORATI. *TADQIQOTLAR*, 76(5), 295-297.
22. Karimovich, S. A. (2026). VAGINOPLASTY (COLPORRHAPHY, COLPOPLASTY)-GENERAL INFORMATION, TECHNIQUES, COMPLICATIONS. *Modern education and development*, 41(1), 290-296.