SHTURM-LIUVILL TENGLAMASINING XOSSALARI
Abstract
Bu yerda haqiqiy funksiya bo’lib, ixtiyoriy haqiqiy sonlar.
(1)+(2) Koshi masalasiga ekvivalent bo’ladigan integral tenglama tuzamiz. funksiya (1)+(2) masalaning biror yechimi bo’lsin. (1) tenglamani avvalo ushbu
References
1. Carroll R. Transmutation and Operator Differential Equations.-North Holland, 1979.-245 p.
2. Carroll R. Transmutation, Scattering Theory and Special Functions. –North Holland, 1982.-457 p.
3. Carroll R. Transmutation Theory and Applications.-North Holland, 1986.-351p.
4. G. Freiling and V. Yurko.Inverse Sturm-Liouville problems and their applications. 13 (1997), 1247-1263.
5. Gilbert R., Begehr H. Transformations, Transmutations and Kernel Functions. Vol. 1–2.-Longman, Pitman, 1992.
6. Trimeche Kh. Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators (Mathematical Reports, Vol 4, Part 1).-Harwood Academic Publishers, 1988.-282 p.
7. A.B. Hasanov Shturm-Liuvill chegaraviy masalalari nazariyasiga kirish. Toshkent: “Turon-Iqbol”, 2016.-584 b.
8. Фаге Д. К., Нагнибида Н. И. Проблема эквивалентности обыкновенных дифференциальных операторов. -Новосибирск: Наука, 1977.-280 с.
9. Gilbert R. Constructive Methods for Elliptic Equations. Springer Lecture Notes Math, 365, 1974.
10. Ситник С.М., Шишкина Э.Л. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. 2019, ФИЗМАТЛИТ, 250 стр.