SHAXSGA DOIR MOLIYAVIY MA’LUMOTLARNI RUXSATSIZ CHIQIB KETISHINI ANIQLASH VA BARTARAF ETISH
Keywords:
shaxsga doir moliyaviy ma’lumotlar, data leakage, DLP, formal model, logistik regressiya, NER, Luhn algoritmi, konfidensiallik darajasiAbstract
Maqolada shaxsga doir moliyaviy ma’lumotlarni (bank kartasi rekvizitlari, hisob raqamlari, kredit shartnomalari va boshqalar) ruxsatsiz chiqib ketishini aniqlash va oldini olishning matematik modeli yoritiladi. Hujjatlar fazosi, konfidensiallik darajasi, moliyaviy atributlar vektori va ruxsatsiz chiqib ketish hodisasi formal ko‘rinishda ta’riflanadi. Deterministik (pattern va shablonlar, Luhn algoritmi) hamda ehtimollik yondashuvlari (ko‘p sinfli logistik regressiya, NER – Named Entity Recognition) asosida aniqlash usullari taklif etiladi. Shuningdek, DLP tizimining samaradorligini TP, FP, FN, TN ko‘rsatkichlari orqali baholash uchun asosiy metrikalar (Accuracy, Precision, Recall, F1-score) keltiriladi. Taklif etilgan matematik model bank va moliyaviy tashkilotlar uchun shaxsga doir ma’lumotlar xavfsizligini oshirishga xizmat qiladi.
References
1. A. Shabtai, Y. Elovici, L. Rokach, A Survey of Data Leakage Detection and Prevention Solutions, Springer (2012).
2. PCI Security Standards Council, Payment Card Industry Data Security Standard (PCI DSS), Version 4.0, PCI SSC (2022).
3. ISO/IEC 27001:2022, Information Security, Cybersecurity and Privacy Protection — Information Security Management Systems — Requirements, ISO (2022).
4. L. Campanile, M.S. de Biase, S. Marrone, F. Marulli, M. Raimondo, L. Verde, Sensitive Information Detection Adopting Named Entity Recognition: A Proposed Methodology, Lect. Notes Comput. Sci. 13378 (2022) 377–388.
5. L. Hernández Aros, L.X. Bustamante Molano, F. Gutierrez-Portela, J.J. Moreno Hernández, M.S. Rodríguez Barrero, Financial fraud detection through the application of machine learning techniques: a literature review, Humanit. Soc. Sci. Commun. 11 (2024) Article 36-06.


