INULINNING KIMYOVIY TUZILISHI, BIOFAOLLIGI VA SANOAT HAMDA NUTRASEVTIK QO’LLANILISH ISTIQBOLLARI
Keywords:
Inulin; fruktooligasaxaridlar; dori vositalarini tashib berish; stabilizatsiya; glomerulyar filtratsiya; strukturaviy moslashuvchanlik; prebiotic faollik.Abstract
Ushbu maqolada inulin biopolimer sifatida har taraflama o‘rganilib, uning kimyoviy tuzilishi, biologik xususiyatlari, shuningdek sanoatdagi qo‘llanilish sohalari batafsil tahlil qilingan. Inulinning molekulyar tuzilishi va funksional guruhlari uning prebiotik va bioaktiv xususiyatlarini belgilab berishi, qolaversa, saraton hujayralariga qarshi potentsial ta’sir mexanizmlarining mavjudligi ilmiy manbaalar asosida ko‘rsatib beriladi. Tadqiqotda inulinning ovqat qo‘shimchasi sifatidagi nutrasevtik (nutraceutical) qiymati, ichak mikroflorasini yaxshilashdagi roli, immunomodulyator ta’siri va metabolik salomatlikka qo‘shgan hissasi yoritilgan.
References
[1] Hines, D.J.; Kaplan, D.L. Poly(lactic-co-glycolic) Acid-Controlled-Release Systems: Experimental and Modeling Insights. Crit.
Rev. Ther. Drug Carr. Syst. 2013, 30, 257–276. [CrossRef]
[2] Lim, T.Y.; Poh, C.K.;Wang,W. Poly (lactic-co-glycolic acid) as a controlled release delivery device. J. Mater. Sci. Mater. Electron.
2009, 20, 1669–1675. [CrossRef]
[3] Tardif, H.; Arnold, C.; Hayes, C.; Eagar, K. Establishment of the Australasian Electronic Persistent Pain Outcomes Collaboration
[4] Liu, Z.; Jiao, Y.;Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv.
Rev. 2008, 60, 1650–1662. [CrossRef]
[5] Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural Polysaccharide Nanomaterials: An Overview of Their
Im-munological Properties. Int. J. Mol. Sci. 2019, 20, 5092. [CrossRef]
[6] . Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002, 27, 703–714. [CrossRef]
[PubMed]
[7] Mensink, M.A.; Frijlink, H.W.; Maarschalk, K.V.D.V.; Hinrichs,W.L. Inulin, a flexible oligosaccharide I: Review of its physicochemical
characteristics. Carbohydr. Polym. 2015, 130, 405–419. [CrossRef]
[8] Van Arkel, J.; Sevenier, R.; Hakkert, J.C.; Bouwmeester, H.J.; Koops, A.J.; van der Meer, I.M. Tailor-made fructan synthesis in
plants: A review. Carbohydr. Polym. 2013, 93, 48–56. [CrossRef] [PubMed]
[9]Mandracchia, D.; Tripodo, G.; Latrofa, A.; Dorati, R. Amphiphilic inulin-d-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications. Carbohydr. Polym. 2014, 103, 46–54. [Google Scholar] [CrossRef]
[10]Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef]
[11]Banguela, A.; Hernández, L. Fructans: From natural sources to transgenic plants. Biotecnol. Apl. 2006, 23, 202–210. [Google Scholar]
[12]Ni, D.; Zhu, Y.; Xu, W.; Bai, Y.; Zhang, T.; Mu, W. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604. Int. J. Biol. Macromol. 2018, 109, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
[13]Peshev, D.; Van den Ende, W. Fructans: Prebiotics and immunomodulators. J. Funct. Foods 2014, 8, 348–357. [Google Scholar] [CrossRef]
[14]Nester, K.; Plazinski, W. Conformational properties of inulin, levan and arabinan studied by molecular dynamics simulations. Carbohydr. Polym. 2020, 240, 116266. [Google Scholar] [CrossRef] [PubMed]


