MAKSIMAL HIPONILPOTENT IDEALGA EGA YETTI O‘LCHAMLI YECHILUVCHAN 3-LI ALGEBRALARI TASNIFI
Keywords:
n-Li algebralar, nilpotent n-Li algebralar, hiponilpotent algebralar, yechiluvchan n-algebralar, differensial.Abstract
Dastlab 1985-yilda Filippov[9] n -Li algebrasi tushunchasini kiritdi va (n+1) -o‘lchamli n -Li algebralarini tasnifladi. 2009-yilda R.Bai va boshqalar[3] n -Li algebralarida giponilpotent ideal tushunchasini kiritdilar va berilgan maksimal m -o‘lchamli filiform giponilpotent ideallar bilan yechiluvchan 3-Li algebralarining tavsifini oldilar. Ushbu maqolada maksimal filiform hiponilpotent idealga ega bo‘lgan maksimal yechiluvchan 3-Li algebralari tasnif qilingan.
References
1. K.K. Abdurasulov, R.K.Gaybullaev, B.A. Omirov, A.Kh. Khudoyberdiev Maximal Solvable Extension of Naturally Graded Filiform n-Lie Algebras. Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 1, pp. 3-22.
2. Nambu Y., Generalized Hamiltonian dynamics, Phys. Rev., vol. 7, no. 8, 2405-2412 (1973).
3. Bai R., Shen C., and Zhang Y., Solvable 3-Lie algebras with a maximal hypo-nilpotent ideal, Electron. J. Linear Algebra,vol. 21, 43-62 (2010).
4. Ling W 1993 On the structure of n-Lie algebras, Dissertation University- GHS -Siegen, Siegn.
5. L.Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 1994, 160, 295-315.
6. R.P. Bai, J. Wang and Z. Li, Derivations of the -Lie algebra realizated by J. Nonlinear Math. Phys. 18 (2011), no. 1, 151-160.
7. R.Bai, G.Song, Y.Zhang, The Classification of -Lie Algebras, arXiv:1006.1932v1 [math-ph] 10 Jun 2010.
8. Y.Nambu, Generalized Hamiltonian Dynamics, Phys. Rev., 1973, D7, 2405-2412.
9. V. Filippov, n-Lie algebras, Sibirsk. Mat. Zh. 26 (1985), no. 6, 126-140, 191.
10. Jacobson N., A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., vol. 6, no. 2, 281-383(1955).
11. Bai R., Shen C., Zhang Y. 3-Lie algebras with an ideal N* Linear Algebra and its Applications, 2009.
12. Beshimova Sh.X., Gaybullayev R.K., Maximal extension of some sovable -Li algebras, Mathematics, machanics and intellectual technologies., 28-29 March 2023, Tashkent, Uzbekistan.