INFEKSION KASALLIKLAR UCHUN DETERMINISTIK VA STOXASTIK MODELLAR
Keywords:
Matematik modellashtirish, epidemilogiya, differensial tenglama, SIR modeli, reproduktiv son, kasallik parametrlari.Abstract
Ushbu maqolada infeksion kasalliklarni o‘rganish va ularning tarqalishini oldindan aniqlashda qo‘llaniladigan deterministik va stoxastik modellar tahlil qilinadi. Deterministik modellar, odatda, differensial tenglamalarga asoslangan bo‘lib, kasallik tarqalishining o‘rtacha tendentsiyalarini aniqlashda yordam beradi. Stoxastik modellar esa ehtimollik va tasodifiylikni inobatga olib, kichik populyatsiyalarda yoki noaniqlik yuqori bo‘lgan vaziyatlarda ko‘proq ahamiyat kasb etadi. Maqolada ushbu modellar orasidagi asosiy farqlar, ularning afzalliklari va cheklovlari muhokama qilinadi. Shuningdek, infeksion kasalliklarning rivojlanishiga ta’sir qiluvchi parametrlarni aniqlash va real hayotdagi epidemiologik ma’lumotlarni tahlil qilishda modellarning qo‘llanilishi bo‘yicha misollar keltirilgan. Ushbu tadqiqot epidemiyalarni samarali boshqarish va oldini olishga qaratilgan amaliy choralar uchun nazariy asos yaratishga xizmat qiladi.
References
1. Anderson, R. M., & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press.
2. Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.
3. Allen, L. J. S. (2008). "An Introduction to Stochastic Epidemic Models." In Mathematical Epidemiology (pp. 81–130). Springer.
4. Diekmann, O., Heesterbeek, J. A. P., & Britton, T. (2012). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press.
5. Grassly, N. C., & Fraser, C. (2008). "Mathematical Models of Infectious Disease Transmission." Nature Reviews Microbiology, 6(6), 477–487.
6. Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and Its Applications. Hafner Press.
7. Renshaw, E. (2011). Stochastic Population Processes: Analysis, Approximations, Simulations. Oxford University Press.
8. Kermack, W. O., & McKendrick, A. G. (1927). "A Contribution to the Mathematical Theory of Epidemics." Proceedings of the Royal Society A, 115(772), 700–721.
9. Britton, T. (2010). "Stochastic Epidemic Models: A Survey." Mathematical Biosciences, 225(1), 24–35.